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EXECUTIVE SUMMARY 

We developed simulation tools to explore a new model for traffic signal management based on 
network consensus control principles. The model seeks to understand the evolution of the lengths 
of the queues at each traffic signal; that is, the number of cars waiting at the signal. Adapting 
existing consensus control models to traffic management required introducing a number of 
additional constraints that challenged the existing theory. We implemented the model in a 
simulation tool that allows for interactive analysis and visualization of the approach.  

The main contribution of the project is the simulation platform that allows for comparison 
between the proposed consensus approach and a standard traffic signal control protocol. The 
main features of the mathematical model and the simulation tools are explained and illustrated in 
the report. The complete open source for the code is available in the online depository. The code 
is in the form of MATLAB files with extensive comments explaining the various parts of the 
model. The tool has an intuitive graphical user interface (GUI) which facilitates exploration of 
the many features. Simulation runs may be saved at any time of the run in a standard MATLAB 
file format. The same simulation tool may be used to load and rerun previous experiments. 
Alternatively, the data can be explored offline with other MATLAB scripts provided. 
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1.0 INTRODUCTION 

Congestion in the urban areas has been increasing with significant economic and social costs. 
According to the 2015 Urban Mobility Report, the total additional cost of congestion was $160 
billion (Texas Transportation Institute, 2015). This problem will only be exacerbated in the 
future with more and more of the population moving to urban areas. Traffic signals represent a 
significant bottleneck for congestion management. There is a need to develop new traffic control 
strategies which exploit new developments in communication, sensing and intelligent 
infrastructure systems. Several researchers have developed strategies for decentralized and 
partially decentralized decision signal optimization such as Split Cycle Offset Optimization 
Technique (Hunt, Robertson, Bretherton, & Winton, 1981); SCATS - Sydney Co-ordinated 
Adaptive Traffic System (Lowrie, 1990); RHODES - Real Time Hierarchical Optimized 
Distributed Effective System (Mirchandani & Wang, 2005); and OPAC - Optimized Policies for 
Adaptive Control (Gartner, 2001). However, these strategies are limited in the network level 
congestion management (Papageorgiou, Diakaki, Dinopoulou, Kotsialos, & Wang, 2003). Here 
we propose a new approach to urban traffic signal control based on network consensus control 
theory which is computationally efficient, responsive to local congestion, and at the same time 
has the potential for congestion management at the network level. 

We have implemented a consensus approach in a MATLAB simulation module to explore the 
potential benefits to traffic flow. 

1.1 MATHEMATICAL MODEL 

The model seeks to understand the evolution of the lengths of the queues at each traffic signal; 
that is, the number of cars waiting at the traffic signal. We use a discrete time model. Essentially, 
we quantify time and study the evolution as this time unit is incremented. The signals’ cycle-time 
will be measured in multiples of this basic time unit. The basic time unit used corresponds to two 
seconds, which we take as the average time for a vehicle to move through the intersection. This 
basic time unit can be adjusted easily in the main code. 

A consensus/agreement protocol aims to achieve a common value of the “state” variables via a 
distributed algorithm in which values of each state variable are updated based on the values of its 
“neighbors” in a communication graph. More precisely, a networked control system consists of a 
number of dynamical systems called “agents” which are linked via a communication or sensor 
graph. The state of each agent evolves according to both its own dynamics and the dynamics of 
its neighbors in the communication graph. In a consensus protocol, the neighbors’ influences 
come through a weighted average of their current states. The basic theory guarantees that, under 
minimal connectivity conditions on the communication graph, the states converge asymptotically 
to a common value. This “consensus” value is achieved using only local computations. There is a 
balance between computational requirements and robustness of the network: fewer edges in the 
communication graph results in more localized computations requiring less computing power at 
each node, and more edges lead to more robust behavior in the presence of uncertainty and 
disruptions. 
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The theory of consensus or agreement protocols for networked control systems has been 
developed extensively over the last decade. This subfield of mathematical control theory has 
been used to model a number of situations where a distributed calculation approach achieves 
global optimal objectives or when emergent behaviors result from distributed decision making. 
Some examples of application include formation control of autonomous vehicles (Lafferriere & 
Mathia, 2008) (Olfati-Saber, Fax, & Murray, 2007) (Veerman, Lafferriere, Caughman, & 
Williams, 2005) (Williams, Lafferriere, & Veerman, 2005) (Lafferriere, Williams, Caughman, & 
Veerman, 2005) (Lafferriere, Caughman, & Williams, 2004); distributed estimation in sensor 
networks (Das & Mesbahi, 2009) (Ren, Beard, & Atkins, 2007); and vulnerability of networked 
synchronization processes (Dhal, Lafferriere, & Caughman, 2016)(see also the books (Mesbahi 
& Egerstedt, 2010), (Bullo, Cortés, & Martínez, 2009), and (Ren & Beard, 2008) for many other 
references).  In these models, autonomous “agents” adjust their state relying on local information 
so as to achieve consensus on a global objective. 
 
In the context of urban traffic, queue lengths play the role of agents and the goal is to achieve a 
prescribed ratio of queue lengths: for example, we may desire all queues to have the same length 
and, thus, effectively balance the load on all roads. Alternatively, the goal could be to achieve a 
desired “deviation” from a nominal set of lengths determined from historical data. These 
deviations could be used to indirectly redistribute loads on the city grid based on evolving 
situations, such as traffic accidents or deteriorating road conditions.  

The basic mathematical set up resulting from a consensus approach must be modified and 
adapted to handle all the features inherent in modeling urban traffic: traffic flow theory for traffic 
propagation, car delays, lane choice, congestion, etc. At present, the existing mathematical 
consensus theory does not extend to include all such additional constraints. 

We developed simulation tools to explore how to include relevant traffic constraints in a 
consensus protocol and to understand how this approach affects overall traffic behavior. 

1.1.1 General Mathematical Setting 

The process is modeled as a discrete-time dynamical system. A time step corresponds to a 
(small) basic unit of time. All green indications stay on for an integer multiple of this basic unit 
of time, so the same signal could stay green during various transition steps of the model. All 
signals are on the same clock. 

We define three graphs. All are (generally) directed graphs and so they consist of a set of nodes 
(or vertices) and a set of ordered pairs of nodes (which we call edges). If the graph is undirected, 
allowing for bidirectional communication, that simply means that (𝑖𝑖, 𝑗𝑗) is an edge if and only if 
(𝑗𝑗, 𝑖𝑖) is an edge. The variable 𝑛𝑛 will denote the total number of queues. The 𝑛𝑛-vector 𝑦𝑦 will 
represent the length of all the queues. This vector 𝑦𝑦 is the state variable for the dynamical 
system. 

1. The communication graph 𝑮𝑮𝒐𝒐 = (𝑽𝑽(𝑮𝑮𝒐𝒐),𝑬𝑬(𝑮𝑮𝒐𝒐)). This refers to the digraph in 𝑛𝑛 nodes 
(so 𝑉𝑉 = {1, … , 𝑛𝑛}) that specifies which queues are compared at each iteration. We say 
that 𝑗𝑗 is an in-neighbor of 𝑖𝑖 in 𝐺𝐺𝑜𝑜 if (𝑖𝑖, 𝑗𝑗) is in 𝐸𝐸(𝐺𝐺𝑜𝑜). We denote by 𝑁𝑁𝑜𝑜(𝑖𝑖) the set of in-
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neighbors of 𝑖𝑖. If 𝑗𝑗 is in 𝑁𝑁𝑜𝑜 (𝑖𝑖), then information about 𝑗𝑗  “flows” to 𝑖𝑖. Alternatively, we 
say that node 𝑖𝑖 uses knowledge of node 𝑗𝑗.  

2. The conflict graph 𝑮𝑮𝒄𝒄. This is an undirected graph on 𝑛𝑛 nodes. This encodes the queues 
that meet at an intersection and, thus, are governed by the same traffic signal. At any step 
of the iteration, only one of the conflicting queues can be reduced. We say two queues 𝑖𝑖, 𝑗𝑗 
are in conflict if (𝑖𝑖, 𝑗𝑗) is an edge of this graph. We write 𝑁𝑁𝑐𝑐(𝑖𝑖) for the set of neighbors of 
𝑖𝑖. 

3. The traffic flow graph 𝑮𝑮𝒇𝒇. This is a digraph on 𝑛𝑛 nodes. This graph indicates which 
queues will feed into which other ones once the signal turns green for the first one. We 
write 𝑁𝑁𝑓𝑓(𝑖𝑖) for the set of in-neighbors of 𝑖𝑖. 

For any digraph we also say that 𝑖𝑖 is an out-neighbor of 𝑗𝑗 if 𝑗𝑗 is an in-neighbor of 𝑖𝑖. For 
undirected graphs every in-neighbor is also an out-neighbor and vice versa. 

For each graph we define a corresponding adjacency matrix. An adjacency matrix has a 1 in 
entry (𝑖𝑖, 𝑗𝑗) if 𝑗𝑗 is an in-neighbor of 𝑖𝑖. The matrix has zeros in all other entries. 

We will denote the corresponding adjacency matrices associated to each graph above as 𝐴𝐴𝑜𝑜, 𝐴𝐴𝑐𝑐, 
and 𝐴𝐴𝑓𝑓, respectively. Since 𝐺𝐺𝑐𝑐 is undirected, 𝐴𝐴𝑐𝑐 is a symmetric matrix. 

 
1.1.2 An Illustrative Example 

We determine the specific values for each of the quantities described above in relation to the 
very simple example illustrated in Figure 1.1. 
 

 

Figure 1.1: A short street section with three intersections and six queues. Arrows indicate traffic flow. Triangles 
indicate traffic signals. A white (black) triangle indicates a green (red) indication. 

For the example in Figure 1.1, 𝑛𝑛 = 6 and the adjacency matrices are as follows. 

 
 𝐴𝐴𝑐𝑐 =

⎝

⎜⎜
⎛

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0⎠

⎟⎟
⎞

          𝐴𝐴𝑓𝑓 =  

⎝

⎜⎜
⎛

0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0⎠

⎟⎟
⎞

  (1.1) 
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Notice, for example, that in the conflict matrix 𝐴𝐴𝑐𝑐 there are 1s in entries (3,4) and (4,3) to 
indicate that queues 3 and 4 are governed by the same traffic signal (similarly for queues 1 and 2 
and for queues 3 and 4). In 𝐴𝐴_𝑓𝑓 there is a one in entry (3,1) because cars from queue 1 flow into 
queue 3. A similar interpretation applies to the other entries. The communication graph 𝐺𝐺𝑜𝑜 is, in 
principle, independent from the geographical arrangement of roads and queues.  
 
For the first simulations, we coded a few standard graphs: complete, path, cycle, etc. In practice, 
some useful communication graphs are, in fact, related to the geographical location of the 
signals. For example, the one-step graph used in some of the simulations below corresponds to 
having the signals immediately up and down stream be “neighbors” (also referred to as a one-
hop rule). 
 
We introduce an associated Laplacian matrix to 𝐴𝐴𝑜𝑜 as follows. For each node 𝑖𝑖  let 𝑑𝑑(𝑖𝑖) denote 
the number of in-neighbors of 𝑖𝑖. We call 𝑑𝑑(𝑖𝑖) the in-degree of node 𝑖𝑖. Let ∆𝑜𝑜 denote the diagonal 
matrix with (∆𝑜𝑜)𝑖𝑖𝑖𝑖  =  𝑑𝑑(𝑖𝑖). That is, ∆𝑜𝑜 is the diagonal matrix of in-degrees. We now define the 
Laplacian matrix, 𝐿𝐿, associated to 𝐴𝐴𝑜𝑜 as 

 
 𝐿𝐿 =  ∆𝑜𝑜  −  𝐴𝐴𝑜𝑜 . (1.2) 

 
Note that 𝑑𝑑(𝑖𝑖) is the sum of the 𝑖𝑖-th row of the matrix 𝐴𝐴𝑜𝑜. It follows that the sum of the rows of 
𝐿𝐿 are all zero. Put another way, if 1 is the column vector with all 1's, then 𝐿𝐿𝟏𝟏 = 0.  This says, in 
particular, that 0 is an eigenvalue of 𝐿𝐿 and that 1 is a corresponding eigenvector. For a connected 
graph, the number 0 is always a simple eigenvalue and the size of the smallest non-zero 
eigenvalue determines the stability properties of the network, for example, the rate of 
convergence to a consensus value. 
 
1.1.3 Equations 

To describe the equations and to account for appropriate truncations (since queues must have 
nonnegative length) we need some additional definitions. The function 𝜎𝜎:ℝ𝑛𝑛 → {0,1}n is given 
as follows. For 𝑖𝑖 = 1, … ,𝑛𝑛, 

 𝜎𝜎(𝑦𝑦)𝑖𝑖 = �

1, 𝑖𝑖  𝑦𝑦𝑖𝑖 > max
𝑗𝑗∈𝑁𝑁𝑐𝑐(𝑖𝑖)

𝑦𝑦𝑗𝑗;

1, 𝑖𝑖  𝑦𝑦𝑖𝑖 = max
𝑗𝑗∈𝑁𝑁𝑐𝑐(𝑖𝑖)

𝑦𝑦𝑗𝑗  𝑎𝑎  𝑖𝑖 < min
𝑗𝑗∈𝑁𝑁𝑐𝑐(𝑖𝑖)

𝑗𝑗 ;

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒.

 

𝑓𝑓

𝑓𝑓 𝑛𝑛𝑑𝑑

𝑖𝑖

(1.3) 

 
This function works as a decision variable to determine which queue at a traffic signal gets the 
green indication. Next, we introduce a few parameter vectors. 
 

• 𝒓𝒓𝒐𝒐𝒐𝒐𝒐𝒐.  This represents the number of cars in each queue that gets through the signal once 
it turns green. More precisely, during each time unit while the indication is green for 
queue 𝑖𝑖, the queue will be shortened by 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖) vehicles. This does not account for startup 
delays for vehicles to move, but this is one of the simplifications we used in order to 
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focus on the impact of the main signal-cycle schedules. We explain below how we 
introduced additional constraints to account for some delays in the car movements. 

 
• 𝒓𝒓𝒊𝒊𝒊𝒊.  This represents the input rate of vehicles to queues on the peripheral queues; that is, 

the rate at which the vehicles are entering the street grid. 
 
The dynamic equations can now be written as a system in the following form:   
 

 

𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜎𝜎�𝑦𝑦( )� ⋅ 𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ max
 

(𝐿𝐿 ( ), 0)

 𝑐𝑐 𝑖𝑖 = 𝐴𝐴𝑓𝑓�𝜎𝜎�𝑦𝑦( )� ⋅ 𝑜𝑜𝑜𝑜𝑜𝑜� + 𝑖𝑖

 𝑦𝑦( + 1) = max
 

(𝑦𝑦( ) − 𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑐𝑐 𝑖𝑖 , 0) 
 

𝑎𝑎𝑒𝑒𝑒𝑒 𝑜𝑜 𝑒𝑒 𝑦𝑦 𝑜𝑜

𝑎𝑎𝑒𝑒𝑒𝑒 𝑛𝑛 𝑜𝑜 𝑒𝑒 𝑒𝑒 𝑛𝑛
𝑜𝑜 𝑜𝑜 𝑎𝑎𝑒𝑒𝑒𝑒 𝑎𝑎𝑒𝑒𝑒𝑒 𝑛𝑛

(1.4) 

 
Here 𝑡𝑡 is the current time step and the dot stands for multiplication entry by entry. The “max” 
functions are there to guarantee that some quantities are nonnegative, since we can never have a 
negative number of vehicles in a queue. Finally, we could put it all into one system of equations 
to better see the overall structure. 

 y(t + 1) =  max
 
�y(t) − σ�y(t)� ⋅ max

 
�sgn�Ly(t)�, 0� + Af�σ�y(t)� ⋅ rout� + rin, 0� (1.5) 

 
While this equation accounts for the essential part of the consensus protocol, the incorporation of 
typical traffic constraints such as signal conflicts, car delays, and minimum green times required 
the introduction of additional decision variable in the computer code. 
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2.0 SIMULATION TOOLS AND FEATURES 

2.1 TOOL DESCRIPTION 

The simulation tool was built using the MATLAB computer software from MathWorks. We used 
the MATLAB graphical user interface development environment (GUIDE) to create a GUI 
which allows the user to visualize the simulation runs in an easy-to-understand environment and 
provide direct access to a number of simulation parameters. Some of these parameters can be 
modified “on the fly” while the simulation is running. The screenshot in Figure 2.1 shows the 
nature of the GUI.  

 

Figure 2.1: The GUI for tlcc23.m. The long, numbered rectangles represent the car queues. The triangles are the 
corresponding traffic signals and point in the direction of traffic flow. In each block, one lane is a turning lane. For 

example, queues 2 and 14 correspond to turning lanes, right turn and left turn, respectively. 

We provide two versions of the main tool: tlcc23.m and tlcc34.m.  The numbers refer to the street 
grid size. Users can modify two lines in the source code to create other rectangular grids. We 
describe below some of the tool features and explain how some additional flexibility could be 
added for the exploration of the consensus protocol. 

1. Two protocols are implemented simultaneously: the consensus approach and a fixed pattern 
approach which we called proportional. In this second method, the signals turn green in a 
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fixed proportion of time at each intersection. By default, N/S streets get a green indication 
twice as long as the E/W streets. This proportion can be changed by the user within the GUI. 
As long as the inflow of cars into N/S streets and E/W streets maintain that ratio, the 
proportional protocol is efficient. When those inflow rates are changed, the consensus 
protocol adapts and becomes more efficient in that fewer cars are held up in the grid. The 
user can visualize the two approaches by switching which mode to display using a push 
button. Both simulations run simultaneously. (For analysis purposes, the queue lengths for 
the consensus protocol are stored in the variable 𝑦𝑦 and those for the proportional protocol are 
in 𝑦𝑦𝑓𝑓.) 

2. There are two lanes on each block one for turning and one for going straight. Cars entering a 
block distribute into the two lanes in a 1-to-2 ratio:  for every car turning, two go straight. 
This ratio is changeable in the code but not yet available on the GUI. It is important to note 
that each lane has its own dedicated signal. Under the proportional protocol both the straight 
lane and the turning lane traffic signals turn green (or red) simultaneously to preserve the 
constant green/red ratio. However, in the consensus protocol they are allowed to change 
independently, restricted only by the fact that vehicles cannot cross each other at an 
intersection. This constraint is captured in the conflict matrix mentioned earlier. 

3. We built in a delay, as each signal turns green, to account for the fact that cars take some 
time to accelerate and get through the intersection. This is a simplification to somewhat 
account for some delay at start up, but it does not account for more sophisticated vehicle 
dynamics. 

4. We also built in a minimum time for the green indications to be on (this is configurable 
through the GUI). While in a regular consensus protocol signals could possibly switch at 
every cycle, this minimum time will allow for more realistic simulations. It is natural to 
expect that any signal protocol should allow for some minimum number of cars (at least one) 
to go through during each green indication cycle. 

5. The users can choose from several communication graphs pre-coded or load their own 
custom graph. There is an additional tool to generate custom graphs. This is separate from 
the main simulation tool but it is well integrated with it. The communication graph 
determines which queues pass information to each other when making a decision on which 
signal to turn green. The simulation assumes that queue lengths are recorded or estimated 
from street sensors. 

6. Data from a simulation run can be saved to a file. This file contains all the necessary 
information to repeat the simulation using the same programs. The saved files also include 
additional information for further analysis, such as all the relevant adjacency matrices. These 
files were used to analyze the particular runs offline and compare the two protocols. 

The computer screenshots displayed in Figure 2.2, show the GUI of the simulation tool. The user 
has direct access to a number of features mentioned above. The two images correspond to the 
same simulation run with the same initial values and the same parameters values, but reflect the 
two protocols implemented. The screenshots capture both the consensus and the proportional 
simulation modes. 
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Figure 2.2: Screenshot displaying the evolution of both protocols: consensus (top), proportional (bottom). Queue 
lengths are notably different. 



10 

3.0 SIMULATION RESULTS 

To illustrate the use of the simulation tools, we ran a number of computers experiments to 
compare the impact of sudden changes in traffic flow patterns on overall congestion in the grid. 
We archived the results of the simulations described below in the public depository 
(https://github.com/gerardolf/Traffic_Light_Code). 

3.1 SETUP 

The simulations illustrated below start with a random initial distribution of cars in the various 
queues. We set the inflow patterns (IF) to match the proportional protocol. That is, the inflow on 
E/W streets is twice that of the N/S streets and, correspondingly, the E/W traffic signals in the 
proportional protocol stay green for twice as long as the N/S signals. After some time, we 
significantly increase the inflow rate on the N/S access queues. During this time, we observe 
how the total number of vehicles in the grid increases at different rates for the two protocols. 
After some additional time passed, we restore the original inflow rates to examine how the load 
on the systems is reduced by the two protocols. 

3.2 RESULTS 

Once the inflow rates are changed, the proportional approach can no longer keep traffic flowing 
at a fast-enough rate. This results in significant congestion at the access streets to the grids. At 
the same time, traffic load is very low on many inner blocks. On the other hand, the consensus 
approach was able to distribute traffic more efficiently and kept the load on all streets at a 
comparable level. This is represented in the screen shots in Figure 3.1. As can be observed from 
the plots, the queues do not have identical lengths. This seems mostly due to the effect of 
decision variables that account for minimum green indications times and car delays. The longer 
we force green indications to stay on, the more we depart from a true consensus protocol. 

This general behavior of the queues, of staying within a small range of values, is typical of the 
consensus protocol and is mostly independent of the communication graph used. It should be 
noted that the communication graph used in this particular run is a one-step graph with rather 
few edges. That is, only information from neighboring traffic signals are used to decide on the 
adjustment. Yet, because the graph is connected, the information does propagate through the 
whole street network, maintaining a rather homogenous distribution of queue lengths throughout. 
We describe further below one feature of the simulation that does vary based on the graph used. 

https://github.com/gerardolf/Traffic_Light_Code
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Figure 3.1: Two screenshots of the same runs corresponding to the two protocols: consensus (top), proportional 
(bottom). The light-colored queues indicate congestion. To simplify the display, we use the lighter color to indicate 

that true lengths exceed those displayed. 
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We also provide simple tools to analyze the simulation results offline (tlcc_plots.m). In Figure 
3.2 we show how the queue lengths evolve under the two protocols. Not only do more cars clog 
the system when the proportional protocol cannot keep up, but the queue lengths have a larger 
variance. This makes inefficient use of the roads and creates more chances for congestion at 
different points. 

 

Figure 3.2: Analysis of queue lengths: consensus protocol (left) vs proportional protocol (right). Top plots show all 
queues over the duration of the run. Second row shows the standard deviation of the queue lengths: the proportional 
protocol shows a wider variation of lengths. The third row shows the mean queue lengths: the consensus protocol 

maintains shorter queues overall, reducing the load on the street grid. 

As mentioned earlier another feature of the approach is the possibility of using different 
communication graphs among the traffic signals. More precisely, the decisions of which signals 
turn green are based on comparing queue lengths between neighboring queues as determined by 
the communication graph. These “neighbors” do not need to be physically close, though in a 
couple of the graphs used they are.  

This flexibility of the approach has been incorporated in the simulation tools. The users may 
select from a few graphs or load their own one, previously generated with another supporting 
tool. The graph used in the run is displayed on the lower left corner of the GUI. The one-step 
graph used in this particular simulation, illustrated here, corresponds to essentially a one-hop 
look ahead (and back); that is, queues are compared with those immediately up or down traffic 
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from them. That means that each signal uses information from at most four nearby queues to 
adjust their timing. Using richer graphs, such as the complete graph produces a different 
evolution of queue lengths. Figure 3.3 illustrates this by showing runs with similar parameters 
but different communication graphs. The average queue length appears to grow faster at times 
under the one-step graph. This may be a result of not being able to effectively move traffic based 
on information about all the queues. The information about the various queue lengths flows more 
slowly through the system when the communication graph has fewer edges. 

 

Figure 3.3: Queue length evolution under different communication graphs (complete graph (solid line), one-step 
graph (dashed line)). Under the one-step graph queue lengths increase faster as the information flow is slower 

through the grid. 

Besides the main simulation tools, we also include a macro to generate arbitrary communication 
graphs (graphgen.m). A graph generated by this tool can then be loaded on tlcc23.m or tlcc34.m 
by choosing the “custom” option in the drop-down menu of the graph selection box in the GUI. 
We provide two examples in the files adj*.mat available in the software depository.  

3.3 FURTHER CONSIDERATIONS 

There are a number of issues that need exploring in more detail. We would like to establish the 
precise threshold that makes one traffic signal protocol better than the other on the various 
metrics: total number of vehicles in the system, number of congested streets, variance on queue 
lengths, etc. This could have very practical uses in order to implement multiple protocols based 
on the state of the grid at any given time. 
 
In order to implement a protocol as closely based on the consensus approach as possible, we 
minimized the number of additional restrictions that may be necessary in a full implementation. 
While the current code includes special logic to account for minimum green times and car delays 
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as explained earlier, we have not yet implemented other features, such as maximum red 
indications and a separate treatment of exit queues, among others. 
 
There are many more questions that may be investigated with the simulation tools created. With 
the current state of the tools and the access to the full source we expect many researchers to be 
able to explore the potential of the network consensus protocol.
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